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Abstract

We have developed a non-ergodic ground motion model (GMM) that explicitly models

systematic source, path, and site effects the Oklahoma region using the 2018 BC Hydro

Flatfile for potentially induced earthquakes (PIE). PIE events are attractive to develop

a non-ergodic GMM. Due to the high rate of occurrence of induced earthquakes, PIE

datasets have a significant number of recordings at sites from sources at similar locations.

The median prediction of our non-ergodic GMM is modeled as a base ergodic GMM

and a non-ergodic adjustment. The base ergodic GMM is the ASK21 GMM adjusted for

regional differences between Oklahoma and California ground motion. The non-ergodic

adjustment is comprised of two components. The anelastic attenuation term as cell-

specific attenuation terms, which is the sum over the attenuation from small cells, and

the systematic event terms as spatially varying systematic event terms.

The model parameters are estimate using an integrated nested Laplace (INLA) ap-

proximation that deterministic Bayesian inference method which approximates posterior

marginal distributions. The model INLA approximation is performed with the R-INLA

package. For spatial models, R-INLA implements the stochastic partial differential equa-

tions (SPDE) approach, which allows for fast inference of Bayesian spatial models.

The model is estimated on 113,625 ground motions from 362 well-recorded events. In

total, apart from the random effects there were 10 parameters to estimate: 4 fixed effects

(the intercept, the Moho bounce adjustment, the linear site scaling adjustment, the linear

R-term), and six hyperparameters (φ0, τ0, φS2S,0, the range and standard deviation of

the systematic event constants, and the standard deviation of the cell-specific attenuation

terms). The final GMM is applicable to PIE events occurring within the Oklahoma region

at distances less than 300 km from the site and for spectral periods less than or equal to

1.5 secs.

1 Introduction

Ground-motion models (GMMs) develop estimates of peak ground-motion and response spectral

amplitudes as a function of source, path and site parameters and are an important input into a

seismic hazard assessment. A classical approach for developing GMMs is to use ground-motion
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recordings of earthquake events that occurred in similar tectonic regions as the input data to a

regression analysis performed in the model development process. The prevailing assumption in

this approach is that average site-, path- and source-effects displayed in the data is equivalent

to unique site-, path-, and source-effects at discrete sites and earthquake scenarios (Anderson

and Brune, 1999). This assumption is referred to as the ergodic assumption.

GMMs developed under the ergodic assumption ignore systematic, repeatable, location-

specific source, path and site effects. Instead, these GMMs average over these effects, which

increases the value of the aleatory variability because the unmodeled systematic effects are

treated as random variability that applies to all sites.

In the last two decades, there has been a significant increase in the volume of collected

ground-motion recordings due to an increase in strong-motion instrumentation deployment.

With large datasets more that have multiple recordings at individual stations and events, the

ground-motion field is starting to pivot away from a strict adherence to ergodic assumption

towards a relaxation of it. A first step in this regard is the inclusion of systematic site effects

in a GMM, which can be estimated from multiple recordings at a single site. This leads to a

decrease in the value of the within-event standard deviation, and is referred to as single-station

sigma (Atkinson, 2006; Rodriguez-Marek et al., 2011, 2014). A further step beyond this is to

introduce terms that can be different for some broad geographical regions (Stafford, 2014) to

allow for differences in anelastic attenuation or linear site scaling between regions.

A methodology for a full relaxation of the ergodic assumption in GMM has been proposed

in Landwehr et al. (2016) who developed a fully non-ergodic GMM for California based on a

spatially varying coefficient model (SVCM, Bussas et al., 2017; Gelfand et al., 2003). In an

SVCM, the coefficients vary as a continuous function of location, thus encoding spatial effects

on ground motion. The model of Landwehr et al. (2016) is formulated as a Bayesian hierarchical

model, where the spatially varying terms are modeled as adjustment terms with a Gaussian

process (GP) prior.

Another approach to model spatial varying effects is described in Dawood and Rodriguez-

Marek (2013) who proposed a model to account for path effects, where the anelastic attenuation

term in a GMM is modeled as a sum over the attenuation from small cells. This cell-specific
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attenuation model was extended by Kuehn et al. (2019), who cast the cell-specific attenuation

coefficients as random effects in a Bayesian model to account for their uncertainty. Abrahamson

et al. (2019) combined the models of Landwehr et al. (2016) and Kuehn et al. (2019) to perform

a non-ergodic PSHA for three sites in California.

In the work presented here, we apply the method of Kuehn et al. (2019) and Dawood

and Rodriguez-Marek (2013) to develop a partially non-ergodic GMM of potentially induced

earthquake (PIE) ground motion for the Oklahoma region.

l

2 Model Fitting

The model fitting was performed using a Bayesian inference approach using the package R-INLA1

(Bakka et al., 2018; Bivand et al., 2015; Lindgren and Rue, 2015; Rue et al., 2017) for the com-

puter environment R (R Core Team, 2021). R-INLA implements the integrated nested Laplace

approximation (INLA, Rue et al., 2009), which is a deterministic Bayesian inference method

which approximates posterior marginal distributions (Martino and Riebler, 2020). INLA has

been widely used for estimation of large-scale spatial and spatio-temporal models, for example

in ecology (Bachl et al., 2019; Lezama-Ochoa et al., 2020; Vilela et al., 2021) or disease mod-

eling (e.g. Moraga, 2019; Schrödle and Held, 2011). It has also been used to model spatially

varying seismicity (Bayliss et al., 2020; D’Angelo et al., 2020), evaluate the spatial damage

distribution of earthquake (Wilson, 2020), and in seismic tomography (Zhang et al., 2016). For

an application of INLA to the development of non-ergodic GMMs, see Kuehn (2021a,c).

For spatial models, R-INLA implements the stochastic partial differential equations (SPDE)

approach (Bakka et al., 2018; Lindgren et al., 2011), which allows for fast inference of Bayesian

spatial models. In the SPDE approach, the Gaussian field is approximated by a basis function

approximation (Lindgren et al., 2011), which makes the precision matrix (the inverse of the

covariance matrix) sparse. This is a desirable feature because it can be exploited numerically

1www.r-inla.org
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(Simpson et al., 2012). The basis functions are then evaluated on a Constained Refined De-

launay Triangular (CRDT) mesh over the study region, which then maps spatial effects to the

mesh nodes.

For introductory texts on INLA, see e.g. Gómez-Rubio (2020); Krainski et al. (2019)2.

Franco-Villoria et al. (2019) provide a comprehensive overview of INLA in the context of VCMs.

For a brief introduction to INLA in the context of GMM development, see Kuehn (2021b).

3 PIE Ground Motion

PIE refers to earthquakes that are caused by human activity that alters the stresses and strains

of the shallow crust. PIE are generally small to moderate magnitude events that occur at

shallower depths than tectonic events. Atkinson and Assatourians (2017) compared the PIE

ground motion to tectonic GMMs and found that several GMMs (Abrahamson et al., 2014;

Atkinson and Assatourians, 2015; Yenier and Atkinson, 2015) are appropriate in functional

form and overall amplitude scaling for M 3.5-6 at distances up to 50 km when a smaller

depth to top-of-rupture is prescribed, suggesting that ground motion shaking from induced

events scales similar to the shaking from natural tectonic events when the depth to rupture is

accommodated.

PIE events are attractive to develop a non-ergodic GMM. Due to the high rate of occurrence

of induced earthquakes, PIE datasets have a significant number of recordings at sites from

sources at similar locations. On the surface this makes them ideal for modeling repeatable

source, path and site effects in a non-ergodic GMM. As we discovered during the modeling

process, having such a large dataset to work with lead to challenges at times: evaluation of the

data quality of the meta data and the ground-motion data for a large number of recordings is

difficult; long calculation times are required for the large number of recordings.

2https://becarioprecario.bitbucket.io/spde-gitbook/index.html and https://becarioprecario.

bitbucket.io/inla-gitbook/index.html
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Figure 1: Original Dataset

4 PIE DataSet

The PIE dataset we used is a filtered version of the 2018 BC Hydro Flatfile for PIE ground

motion (Gregor, 2018) which was compiled from the (Mahani and Kao) and Rennolet et al.

(2018) databases. The Mahani and Kao database was compiled from PIE events located in

the Montney Play region of northeastern British Columbia, while the Rennolet et al. (2018)

database was compiled from PIE events in the Oklahoma and Kansas region of the United

States. The PIE 2018 BC Hydro Flatfile is a total of 175,850 records collected between the

time periods of January 2009 and December 2016. A plot showing the distribution of the

earthquake magnitude over hypocentral distance represented in the 2018 BC Hydro Flatfile is

shown in Figure 1.

In this study, only the Rennolet et al. (2018) database was relevant. Advantageously, the

Rennolet et al. (2018) database represents the majority records in the 2018 BC Hydro PIE

Flatfile, making up 174,787 records out of a total of 175,850 records collected between the time

periods of January 2009 and December 2016. The recordings represent 3771 PIE events of
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magnitudes greater than 3 and distances less than 500 km, at 531 stations. Processed time

histories ground motions were computed in RotD50 and RotD100 (Boore, 2010) acceleration

response spectra for a spectral damping of 5% for PGA, PGV, and a suite of 80 spectral periods

between 0.1 and 10 seconds. The 2018 BC Hydro PIE Flatfile retained RotD50 values, which

are approximately equal to the geomean values from the two horizontal components that the

Mahani and Kao (2018) data are based on. Please refer to Gregor (2018) further description

of the 2018 BC Hydro Flatfile.

Our final database filtered out undesirable records from the parent flatfile. A total of

4,165 records were removed for apparent gain problems. This included included the entire

RH∗∗ array, CSTR station, and the PW∗∗ array. Stations that had the same location but

different station identification labels were removed: OK026, OKCFA, W41A, W41B, ARK2,

ARK3, MA01, MA07, 237A, 237B, Z35A, Z35B, U38A, U38B, Z38A, Z35B, T35A, T35B,

S39A, S39B, R32A, R32B, R40A, R40B, OK028 and CHOK. Many of these stations shared

the same V s30, but a few did not. This removed 22,931 records. Station and events having

locations outside Oklahoma/Kansas region were also filtered out; this removed an additional

39,573 recordings. Stations having large station terms from a simple regression sensitivity

were filtered out: stations FW07, FNO, W35A, FW11, IFCF, and IFDF. This removed an

additional 3,389 recordings. Finally, individual records flagged as outliers being more than 4

standard deviations from the results of a simple linear regression were filtered out; this removed

an additional 785 recordings. The final filtered dataset consisted of 113,625 of records and is

shown in Figure 2.

A key issue for using this data set is the estimation of the moment magnitude for the

smaller events. As noted by Abrahamson et al. (2021), there is a systematic difference between

the ground motions from earthquakes with direct estimates of the moment magnitude (set 1)

as compared to the residuals from earthquakes in which the moment magnitude is estimated

using a conversion from a different magnitude scale (set 2). The direct moment estimates lead

to ground motions that are about a factor of 2 larger than the converted magnitudes. This

corresponds to about a 0.25 difference in the magnitudes.

This magnitude conversion issue has not been resolved yet. In Abrahamson et al. (2021),
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Figure 2: Filtered Dataset

the same data set was used to develop modifications to three of the NGA-W2 GMMs to be

applicable to small magnitude events at short distances. Different approaches were used to

address the magnitude conversion for the modifications to the three GMMs: the modification

of the CB14 GMM included both set 1 and set 2 data; the modification of the CY14 GMM

only included the set 1 data; the modification of the ASK14 GMM included both set 1 and set

2 data but with a modification to the small magnitudes of +0.05 for set 1 and -0.25 for set 2.

In this study, we included the data from both sets 1 and 2 with their reported magnitudes,

consistent with the approach used by Abrahamson et al. (2021) for the modification to the CB14

GMM. Magnitude errors are mapped into the source terms. If there two sets of events sample

the same regions, then the effect of magnitude errors will be to increase the between-event

standard deviation, but if there two sets of events are clustered spatially, then the magnitude

errors will affect the non-ergodic source terms.
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5 non-ergodic Ground-Motion Model

A non-ergodic GMM is a model that explicitly models systematic source, path, and site effects.

Hence, the prediction of the GMM becomes dependent on the source and site location. Typ-

ically, the median prediction of a non-ergodic GMM is modeled as a base model, which does

not depend on location, plus location specific source, path, and site effects

µnonerg(~ξ, ~xe, ~xs) = µbase(~ξ) + δL(~xs) + δP (~xs, ~xs) + δS(~xs) (1)

where δL(~xs), δP (~xs, ~xs), δS(~xs) are systematic source, path, and site effects, ~ξ is a vector of

predictor variables describing the scenario (such as magnitude, distance and so on); µbase(~ξ)

is the the median prediction of he ergodic base model; and ~xe and ~xs are the event and site

coordinates, respectively. See e.g. Abrahamson et al. (2019); Villani and Abrahamson (2015);

Walling and Abrahamson (2012) for more detailed descriptions.

In the following, we describe the (non-ergodic) GMM as a (Bayesian) hierarchical model. A

observation (i.e., a recorded ground-motion parameter such as PGA or the response spectrum

at a given period, denoted as Yes, where e and s are indices for event and station) is distributed

according to a normal distribution with median µes and standard deviation φ0

Yes ∼ N (µes, φ0) (2)

The median µes can be written as

µes ∼ µERGes + fnonerg(~θnonerg; ~ξes, ~xe, ~xs) + δBe (3)

where µERGes is the median prediction of the ergodic base model, and δBe is the event term as-

sociated with event e. The term fnonerg(~θnonerg; ~ξes, ~xe, ~xs) describes the non-ergodic adjustment

terms and subsumes the non-ergodic source, site, and path terms described in Equation (1).

The event terms are distributed according to a normal distribution with mean zero and standard
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deviation τ0

δB ∼ N (0, τ0) (4)

which can also be understood as the prior distribution for the event terms.

The median for the ergodic base model, µERGes , consists of a GMM which is adjusted at

small magnitudes ad distances to PIE events, and adjustment terms which account for regional

differences between California and Oklahoma. It is described in Section Ergodic Base Model.

The individual non-ergodic adjustment terms are described subsequently in Section non-

ergodic Adjustment Term. For model fitting purposes, the parameters of the adjustment model,

~θadj, which is part of µERGes , are treated as fixed effects, while the systematic source, site and

path effects (including the event terms δB) are treated as random effects. The parameters that

control the distribution of the random effects (i.e. their standard deviations and/or correlation

length scales) are referred to as hyperparameters in a Bayesian model.

5.1 Ergodic Base Model

The ergodic base model is developed from the model of Abrahamson et al. (2021) adjusted to

Oklahoma conditions, and is written as

µERGes ∼ fASK21(~ξ)es + fadj(~θadj; ~ξes) (5)

where fASK21(~ξes) is the median prediction of the ASK21 model, and fadj(~θadj; ~ξes) is the adjust-

ment due to differences between California and Oklahoma with ~θadj parameters to be estimated;

The different parts of the ergodic model are briefly described in Sections ASK21 Base Model

and Regional Oklahoma Adjustment Term.

The model of Abrahamson et al. (2021), hereafter called ASK21, is itself an adjustment of

the NGA W2 model of (Abrahamson et al., 2014) (ASK14) to induced data. The ASK21 model

adjusts the ASK14 model to accommodate small magnitudes and short distances. However,
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ASK21 retains the anelastic attenuation and linear site scaling coefficients of ASK14, meaning

that it is valid for California conditions. In order to use ASK21 model, we include adjustment

terms that account for differences in the anelastic attenuation and linear site scaling between

California and Oklahoma. In addition to these adjustment terms, we also include an adjustment

term for the strong moho bounce effect (Goulet et al., 2018, 2021) in the the Eastern and

Central US, where Oklahoma resides, and which is not included in ASK14 nor ASK21. These

regional adjustment terms are considered separate from the non-ergodic adjustment terms in

the partially non-ergodic GMM development

5.1.1 ASK21 Base Model

Abrahamson et al. (2021) presents adjustments to Next Generation Attenuation West-2 (NGA-

W2) GMMs for application to induced events. Abrahamson et al. (2021) noted that existing

tectonic GMMs poorly model ground motion amplitudes from shallow rupture small magnitude

events, generally underestimating short-period ground motion at distances less than 10 km for

M less than 5. The ASK21 PIE GMM uses the ASK14 as the base model and adjusts magnitude

dependence of the finite-fault term, H(M), to accommodate magnitudes M < 6 with the term:

H(M) =

 4.5 for M ≥ 6(
1.5 + 1.15(M − 5.57)

)
for M < 6

(6)

and adjusts the distance term at distances less than 15 km to accommodate small to moderate

magnitudes at short-spectral periods with:

fadjust(M,Rrup) = Tm(M) ∗
(
c1 + fR(Rrup,M)

)
(7)

fR(Rrup,M) =

 c2 ∗ ln
(

max(Reff ,5)+0.1

Rc+0.1

)
for Reff < Rc

0 for Reff ≥ Rc

(8)

Tm(M) =


1 for M ≤ 4

5.5−M
1.5

for 4 < M < 5.5

0 M ≥ 5.5

(9)
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in which c2 is a coefficient; Reff is the effective rupture distance and max(Reff , 5) term models

distance dependence saturation at 5 km or less; Rc is the distance at which geometrical spreading

term is adjusted in the ASK21 GMM.

5.1.2 Regional Oklahoma Adjustment Term

The regional adjustment term is to model the regional differences between California (the source

region of ASK14 and ASK21) and Oklahoma. The adjustment term is as follows

fadj(~θadj; ~ξes) = c0 + c1lnR50 + c2 ln
VS30
760
− fattn,ASK21(R) + c3R (10)

in which c0 is the global regional adjustment term; c1lnR50 accounts for the Moho bounce seen

in the data, as shown by Figure 3; c2 ln VS30

760
accounts for differences in the linear site scaling

between California and Oklahoma that is attributed to differences in the average reference

profile; c3 is the regional distance adjustment term.

Figure 3 shows residuals to ASK21 of the full dataset, with records at one station (KAN15)

highlighted. One can clearly see a positive trend from about 50km to 200km, which is modeled

through c1lnR50, where

lnR50 =


0 R < 50

ln
√
R2 +H(M)2 − ln

√
502 +H(M)2 50 ≤ R ≤ 200

ln
√

2002 +H(M)2 − ln
√

502 +H(M)2 200 < R

(11)

and H(M) is defined as in Equation (6). Similar to Kuehn et al. (2019), we remove the intrinsic

anelastic attenuation term fattn,ASK21(R) from the base ASK21 GMM so that it can be included

as part of the adjustment here.

In setting up our regression analysis, c0, c1, c2 and c3 are fixed effects that required priors.

Because we have a large data set, we adopted weakly informative prior distributions for these
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Figure 3: Total residuals to the ASK21 model wih anelasitc attenuation removed for all stations
(black), mean residual in different distance bins (red), and residuals for station KAN15.

fixed effects as the data should be sufficient to estimate them well. These priors were

c0 ∼ N(0, 0.45) (12)

c1 ∼ N(0, 10) (13)

c2 ∼ N(0, 10) (14)

c3 ∼ N(−0.01, 0.01) (15)

Except for c3, all are centered at 0. For c3 the mean is set to −0.01 because it represents

anelastic attenuation, which should be negative; however, when we performed the regression

we did not constrain c3 to be negative because we favored the normal distribution for the prior,

and we noticed that at spectral periods greater than 0.5 seconds c3 trended towards a positive

value.

Although the data may be better fit with a positive linear R term, this behavior will not

extrapolate properly to large distances. Because in PSHA, GMMs are often applied outside the

range constrained by data, we don’t allow for positive c3 coefficients. We removed c3 coefficient

from our adjustment term fadj(~θadj; ~ξes) term at spectral periods greater than 0.5 seconds to

eliminate this undesired effect. The final fadj(~θadj; ~ξes) function of the partially non-ergodic

model was then:
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fadj(~θadj; ~ξes) =

 c0 + c1lnR50 + c2 ln VS30

760
− fattn,ASK21(R) + c3R for T ≤ 0.5

c0 + c1lnR50 + c2 ln VS30

760
− fattn,ASK21(R) for 0.5 < T

(16)

5.2 non-ergodic Adjustment Term

The non-ergodic adjustment term comprises a varying coefficient model (Gelfand et al., 2003;

Landwehr et al., 2016) and a cell-specific anelastic attenuation model (Dawood and Rodriguez-

Marek, 2013; Kuehn et al., 2019). The non-ergodic adjustment has the form

fnonerg(~θnonerg; ~ξes, ~xe, ~xs) = feq(~xe) +
−−→
∆R(~xs, ~xs) · ~cca + δS2Ss (17)

where feq(~xs) is a spatially varying systematic source term,
−−→
∆R · ~cca describes the cell-specific

attenuation term. The cell-specific attenuation term is the dot product of
−−→
∆R, a vector of path

lengths within each cell, and the vector of cell-specific attenuation coefficients ~cca. δS2S is a

(non-spatially varying) systematic site term.

Contrary to other non-ergodic models (Caramenti et al., 2020; Kuehn, 2021c; Landwehr

et al., 2016; Lanzano et al., 2021; Lavrentiadis et al., 2021; Sung et al., 2021) we do not include

a spatially correlated site term. The average distance between stations in our dataset is large,

which does not allow one to reliably infer the spatial length scale of spatially correlated site

terms. Only the spatially independent site terms, δS2Ss, are included in the model.

Following Landwehr et al. (2016), we model the spatially varying source term feq(~xe) as a

Gaussian random field/Gaussian process. This encodes a notion that nearby events produce

similar event terms (Kuehn and Abrahamson, 2020; Trugman and Shearer, 2018). The feq(~xe)

field is parameterized by a mean function, which is zero in this case because the term is an

adjustment to an ergodic base model, and a covariance function, which determines how strongly

correlated nearby events are with one another.

For the covariance function of feq(~xe), we use the Matérn covariance function, which is
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widely used in spatial statistics:

k(~x, ~x′) = ω22(1−ν)

Γ(ν)
(κ|~x− ~x′|)νKν(κ|~x− ~x′|) (18)

where Γ is the Gamma function, Kν is the modified Bessel function of the second kind, κ

is a scale parameter and ν is a smoothness parameter. For ν = 0.5, the Matérn covariance

function becomes the exponential covariance function, while for ν →∞ it becomes the squared

exponential covariance function (Rasmussen and Williams, 2006). Generally, the larger the

ν, the smoother the process. We use a value ν = 1, which is the default in INLA for two-

dimensional data (Bakka et al., 2018; Lindgren and Rue, 2015). Kuehn (2021c) showed that

results from INLA, using a Matérn covariance with ν = 1, are very similar to results obtained

using a exponential covariance function, which is used in other non-ergodic GMMs based on

VCMs (Landwehr et al., 2016; Lavrentiadis et al., 2021; Sung et al., 2021). The spatial field

then serves as the prior distribution for the systematic event terms:

feq ∼ GF (0, k(~x, ~x′))

where the covariance function k(~x, ~x′) is the Matérn function of Equation (18).

For the for the hyperparameters of feq, we use a penalized complexity (PC) prior (Franco-

Villoria et al., 2019; Simpson et al., 2017). In the PC framework, the spatial model is seen as a

complex extension to a simpler, non-spatial base model, encoding shrinkage towards the base

model. The PC prior favors the simpler model and does only allow the more complex model

if the data strongly favors it. The hyperparameters associated with the spatial field are the

marginal standard deviation ω and the range ` =
√
8ν
κ

(Krainski et al., 2019), which corresponds

to the distance where the correlation has a value of 0.14. The PC prior for a two-dimensional

spatial field with Matérn covariance function was developed by Fuglstad et al. (2019) and is

specified by setting probabilities for the marginal standard deviation and the range. We use
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Figure 4: Mesh used for modeling the systematic source effects.

the following values to specify the PC prior

Pr(ω > 0.23) = 0.01 (19)

Pr(` < 10.0) = 0.5 (20)

Using the discussed parameterization of feq mean and hyperparameters, the spatially varying

systematic source terms of feq(~xe) are encoded at the nodes of the input mesh following the

SPDE approach in INLA. We used the input mesh shown in Figure 4 for feq(~xe), which was

created from the source locations.

The cell-specific attenuation are modeled similar to Kuehn et al. (2019). To implement

this into our model, the study region was divided into at 0.15 degree by 0.15 degree cells, the

number of paths in each cell were computed, and the cell-adjustment terms were given a normal

prior distribution as in Kuehn et al. (2019):

cca ∼ N(0, ωca)
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The prior distribution for ωca is also based on the PC-prior. In this case, we specify a probability

α and a value u such that Pr(ωca > u) = α. For the cell-specific attenuation, the values were

informed by (Kuehn et al., 2019), and we use the following prior:

Pr(ωca > 0.01) = 0.01 (21)

Lastly, prior distribution for the non-spatially varying station term is the normal distribu-

tion:

δS2S ∼ N(0, φS2S)

When developing the cell-specific attenuation coefficients ~cca component of the model, we

were interested in the coupled behavior of ~cca with the anelastic attenuation coefficient c3, which

we desired to be negative when combined. At spectral periods near 0.3, around 10 percent of

the combination trended towards positive values, which increased with increasing period. We

felt that 10 percent was a good threshold to determine that the cell-specific attenuation ~cca

should be removed from the model. Subsequently, at spectral periods greater than 0.3 seconds

~cca was removed and the final functional form adopted for the non-ergodic adjustment was then

fnonerg(~θnonerg; ~ξes, ~xe, ~xs) =

 feq(~xe) +
−−→
∆R(~xs, ~xs) · ~cca + δS2Ss for T ≤ 0.3

feq(~xe) + δS2Ss for 0.3 < T
(22)

5.3 Prior Distributions for Standard Deviation Hyperparameters

The standard deviations φ0, τ0, φS2S,0 are internally represented as precision, which is the inverse

of the variance (i.e. precτ = 1
τ2

). When estimating the coefficients, we placed a Gamma prior

on the precision parameters (more precisely, a log-Gamma prior on the logarithmic precision),
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with shape parameter 2 and rate parameter 0.5:

ln precτ ∼ lnG(2, 0.5) (23)

ln precφ0 ∼ lnG(2, 0.5) (24)

ln precφS2S,0
∼ lnG(2, 0.5) (25)

This implies a prior mean for a precision of 4. = 2/0.5.

6 Results

The final partially non-ergodic PIE model coefficients were computed at spectral periods where

there were sufficient data in the final dataset to estimate the coefficients. These were spectral

periods 0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, and 1.5 seconds. All model coefficients

were estimated using Eq. 2. The final functional form adopted for the induced partially non-

ergodic mean ground-motion model is shown in Equation (26).

µes = fASK21(~ξ)es + c0 + c1lnR50 + c2 ln
VS30
760
− fattn,ASK21(R) + δS2Ss + δBe + feq(~xe) + ∆

∆ =


−−→
∆R(~xs, ~xs) · ~cca + c3R for T ≤ 0.3

c3R for 0.3 < T ≤ 0.5

0 for T > 0.5

(26)

Figures 5, 6, 7, and 8 show the final adjustment coefficients for c0, c1, c2 and c3 derived

respectively, with error bars showing the 5th and 95th uncertainty range. Using Equation (26)

as a reference for the partially non-ergodic GMM, NERG-M1 references when ∆ =
−−→
∆R(~xs, ~xs) ·

~cca + c3R; NERG-M2 references when ∆ = c3R; and NERG-M3 references when ∆ = 0. Figure

9 shows the systematic spatial non-ergodic feq(~xe) PGA mean terms and Figure 10 shows the

standard deviation. These figures show that for PGA higher-ground motions are predicted in

the north and south-east region of the study area from source effects and in the area where the
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Figure 5: c0 - intercept

earthquake locations are concentrated the variability of feq(~xe) is small. The other non-ergodic

component of the model, the cell-specific attenuation is shown in Figure 12 for the PGA mean

values and Figure 13 for the standard deviation. The number of paths in each cell is shown in

Figure 14.
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Figure 6: c1 - moho bounce

Figure 7: c2 - site
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Figure 8: c3 - distance

Figure 9: Mean
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Figure 10: Std Dev

Figure 11: PGA station terms map
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Figure 12: cA mean
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Figure 13: cA sd
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Figure 14: Number of paths

The φS2S, φSS and τeq hyperparameters versus spectral period are presented in Figures 15,

16, and 17, respectively. These figures show that PNREG-M1 hyperparameters are between 10

to 20 percent lower than ERG-M hyperparameters. Once the non-ergodic cell-specific atten-

uation cca are removed PNREG-M1,M2 coefficients are similar to ERG-M coefficients for site

hyperparameters φS2S anf φSS. In contrast, the PNREG-M1,M2,M3 τeq coefficients are con-

sistently lower than ERG-M coefficients across all periods. This is likely a result of including

spatially varying systematic event terms, feq(~xe), in the partially non-ergodic models.
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Figure 15

Figure 16
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Figure 17

7 Model Applicability

The final partially non-ergodic model is applicable to PIE events occurring within the Oklahoma

region at distances less than 300 km from the site and for spectral periods less than or equal

to 1.5 secs.

8 Response Spectra

Response spectra plots of Mw 5.5 at hypocentral distances of 20 km, 50 km, 100 km and 200

km are shown in Figures 18, 19,20, and 21, respectively, and compared to the ASK2021 GMM.

The NREG-M and the ERG-M show lower ground motions at distances less than 100 km, and

larger ground motions at distances greater than 100 km. The ASK21 GMM is developed using

California data, and the differences in the attenuation from the west and east are picked up in

the NREG-M. Recall that the magnitude conversion has a large effect on the residuals for the

Oklahoma ground motions. In this study, the magnitudes for small magnitude events that were

converted to moment magnitude (set 2) were used as reported. In contrast, the ASK21 GMM
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applied a correction to the set 2 magnitudes. If the non-ergodic GMM was developed using the

same conversion as used in the ASK21 GMM, the ERG-M and NERG-M models would have

larger ground motions, closer to the ASK21 GMM at short distances. The differences in the

large distance scaling would be similar to those shown here.

Figure 18: Rhypo 20 km
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Figure 19: Rhypo 50 km

Figure 20: Rhypo 100 km
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Figure 21: Rhypo 200 km

9 Magnitude and Distance Scaling Effects

Magnitude scaling of the NREG-M is shown in Figure 22 at hypocentral distance of 20 km and

Figure 23 at hypocentral distance of 75 km at spectral periods 0.01 (PGA), 0.2 second and 1

second. The solid line represents the ASK21 GMM scaling, the long-dashed line represents the

NERG-M scaling and the small dashed line represents the ERG-M scaling. These figures show

little differences in magnitude scaling between the three models.
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Figure 22: Rhypo 20 km

Figure 23: Rhypo 75 km

Distance scaling of the PNREG-M is compared to the ERG-M and ASK2021 in Figure 24
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. This figure shows that models generally share a similar distance scaling

Figure 24: Mw 5.5

Site scaling with VS30 of the NERG-M is compared to the ERG-M and ASK2021 in Figure

25 for Mw 5. This figure shows a larger divergence between the ASK21 GMM and the NERG-M

and ERG-M models in the site-scaling. The NERG-M and ERG-M site scaling appears to be

relatively constant with VS30. For an oscillator period of 1.0 seconds, the scaling of spectral

acceleration with VS30 is positive. Such a scaling is physically implausible. For use of our

GMM, the total VS30-scaling coefficient should be constrained to be negative (i.e. the value of

coefficient c2 should be smaller than the absolute value of the ASK21 VS30 coefficient).
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Figure 25: Mw 5.0

10 Spectral Correlation

We also explore the correlations between the event terms δB, station terms δS2S, and remaining

residuals δWS0 at different spectral periods. We calculate the empirical correlations between

the terms, for the non-ergodic (NERG) and ergodic (ERG) models, using only event/station

terms and records that are available at all periods. We compare the estimated correlations

with the empirical calculations calculated from the respective terms of the ASK14 GMM, as

well as the correlation model of Baker and Jayaram (2008) (BJ). Note that the BJ model is a

correlation model for within-event residuals.

Figure 26 and Figure 27 show δB versus spectral period conditioned on PGA and 0.5

seconds, respectively. For the correlation conditioned on PGA, overall there is similar correla-

tion between the difference models to 0.15 seconds. The NERG and ERG δB terms are more

correlated at the longer periods than either the ASK or BJ correlations. Without further in-

vestigation it is not clear why these differences occur; it could be a magnitude effect, a regional
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effect, or an effect inherent to PIE events.

Figure 26: PGA

Figure 27: T=0.5 sec
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Figure 28: PGA

Figure 29: T=0.5 sec
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The correlations for δS are shown in Figures 28 and 29; herre, the overall correlations are

more consistent between the models. The last evaluation performed was for the correlation

of deltaWS which is shown in Figures 30 and 31 for PGA and 0.5 seconds, respectively. The

correlations from the PNREG, ERG and BJ model are similar; whereas, ASK are similar only

near the conditioning periods.

Figure 30: PGA
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Figure 31: T=0.5 sec

11 Discussion

In total, apart from the random effects there were 10 parameters to estimate: 4 fixed effects (the

intercept, the Moho bounce adjustment, the linear site scaling adjustment, the linear R-term),

and six hyperparameters (φ0, τ0, φS2S,0, the range and standard deviation of the systematic

event constants, and the standard deviation of the cell-specific attenuation terms).

In the model building process, we tried different versions of the degree to which we could

relax the ergodic assumption but were ultimately limited by the dataset in several ways. As

mentioned earlier, we attempted in include spatially varying site term fs; however, the separa-

tion distance between stations within the dataset could not resolve this term. Subsequently it

was dropped from the model. The model was also limited by the number of records available

at the different spectral periods. Generally, the model coefficients up to T ≤ 0.3 seconds were

well behaved, showing trends that were expected, which allowed all coefficients to be estimated.

At T > 03 seconds the initial model coefficients were less behaved and several coefficients were

constrained.
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Further work on this model will look at addressing several items. The dataset bias between

the magnitude correction and the ASK21 GMM was likely mapped into our GMM coefficients.

The bias should be removed prior to use of the GMM. The Vs30 scaling in the GMM should

also be addressed. Our Vs30 scaling at longer periods increases with increasing Vs30. This

is physically implausible. Hence, the Vs30 scaling coefficient should be constrained to be less

than the ASK21 Vs30 scaling coefficient, which would removed this undesired effect. The

differences between the spectral correlation of our GMM to the ASK GMM should also be

investigated further. We see differences in the correlations from our model (both ergodic and

non-ergodic) and previously published models. In general, spectral correlations are quite stable

across different regions and data sets, so it should be investigated whether this is inherit to he

GMM formulation, or possibly PIE events.

As a supplement to this report, we provide an electronic copy of the GMM coefficients.
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